In 1977, the Canadian province of British Columbia undertook a massive campaign against drunk driving. There was no change in the law, but there was highly intensified enforcement by police. The campaign was given huge publicity, and very conspicuous mobile Blood Alcohol Testing units (“BATmobiles”) were a prominent feature of the BC driving scene during that year. To give an idea of the scope—the number of times drivers were stopped was equivalent to 30% of the total number of vehicles registered by the province’s 2.5 million inhabitants. The program reduced drinking and driving fatalities by an estimated 18%. But in a peculiar twist, overall traffic deaths during the same period were up 19%.

This kind of result isn’t at all surprising to Professor Gerald Wilde, a Canadian psychologist specializing in risk-taking behavior and transportation safety. Wilde argues that safety campaigns tend to move accidents around rather than reduce them because traditional approaches do not motivate individuals to change their “target level” of risk, the amount of risk they are willing to accept in their everyday lives. People have a sort of built-in danger thermostat, he says, a subconscious sense of ambient risk. Make things safer in one aspect of their lives, and they will tend to use up this safety benefit by adapting their behavior to the new reality and increasing risk-taking in another. He calls the theory Risk Homeostasis.

It’s a theory that has been hotly debated in academic circles for almost two decades now. It’s been described as “the devil’s idea to some in the safety community” because it constitutes a frontal attack on the premises underlying current government and industry policies aimed at reducing losses from accidental deaths and injuries. It challenges the “technological fixes” offered by engineering greater safety in the vehicle and the environment, and shifts the focus to the behavior of the driver.

Recent revelations about the effects of automobile antilock braking systems (ABS) on crash rates lend weight to Professor Wilde’s theory. The systems work. They help prevent skidding and offer drivers better control in emergencies. But evidence shows that drivers with ABS-equipped vehicles tend to drive faster and rely more on their brakes than drivers who don’t have the devices. According to the U.S. Highway Loss Data Institute the systems have not reduced either the frequency or the cost of crashes.

The Dutch-born Wilde began to shape his theory during the early ’70s when, as a young researcher working at the National Institute of Road Safety in France, he came across some work by a British psychologist named Taylor. Taylor had recorded drivers’ reactions to road and traffic situations by measuring Galvanic Skin Responses (GSR), changes in the electrical conductance of skin caused by microscopic changes in sweating. Taylor related these measurements to three important variables: the accident history of different sections of roadway as recorded in police accident reports; the levels of GSR experienced by the drivers as they drove over the roadway; and drivers’ speeds.

The results fascinated Wilde. They showed that drivers reacted subconsciously to road hazards such as traffic lights, curves and oncoming vehicles, and their reactions related well to the accident history of different road sections. Over a road section with many hazards drivers showed higher GSR ratings, but over any given period of time the GSR levels were remarkably constant. In other words, if there were lots of hazards, drivers slowed down. They changed their behavior to keep the risk they experienced at a fairly constant level.

In the years since he was inspired by this phenomenon, Wilde has gathered data, refined his theory and marshaled his arguments. Now, as a highly respected and internationally known authority on risk-taking behavior and health communities by publishing a book titled Target Risk.

In addition to presenting his theory, with all its supporting concepts and data, the book proposes a radical shift in approaches to promoting health and safety. As an alternative to the traditional strategies of Engineering, Enforcement and Education—the three E’s of safety policy—Wilde proposes a strategy of “Expectationism.”

Safety comes from within, Professor Wilde believes. Only by improving people’s expectations of the future can we change their level of risk acceptance. For example a study of Quebec motorists found that individuals who highly valued the future had fewer driving demerit points, fewer accidents, and better attitudes towards safety. Another study showed that American students with a strong future orientation were less likely to smoke or smoked less.

In driving, the success of incentive programs for safe drivers bolsters the expectationist idea. When a German trucking company offered its drivers a $170 bonus for every six months without accident, its accident rate dropped by 86%. The incentives don’t have to be large and in fact, Wilde argues, it’s probably better if they aren’t. An American mining company gave its workers stamps they could exchange for merchandise as a reward for safe performance. Its accident rate dropped by 98%.

“It’s a carrot and stick approach,” Wilde says. “Reward people for good behavior and punish them for bad.” But punishment must not be relied on too heavily—especially severe punishment. “A law cannot be enforced,” he says, “if its strictness exceeds popular opinion about the immorality or deviancy of the act.”

On the other hand, high expectations for the future can have a powerful effect on health and safety behavior. At the heart of Professor Wilde’s blueprint for the future is his advice to governments to shift some of the massive expenditures now allocated to enforcement and engineering into schemes that enhance people’s perception of their future and encourage them to want to be safer, healthier, and happier.